ROBO-ONE SERVERについて

2016/04/16 開発ツール講習会資料

一般社団法人二足歩行ロボット協会 西村輝一

- ・ROBO-ONEサーバーの概要
- ・サーボの通信プロトコルについて
- ・準備するもの
- ・必要なソフトウェア
- サーボの設定
 - ドライバーのインストール
 - ・サーボモーターの設定
- ・ロボットアームの設定
- ・サーバーの起動と確認
 - ・サーバーの設定とサーボとの接続
 - ・接続の確認プログラム
- MATLAB Simulinkとの接続
 サンプルプログラムの動作確認

ロボットアームに使われているサーボモータの通信プロトコルを意識する ことなく、簡単に位置指令したり、サーボモータの情報を得るためのサー バーです。

株式会社ベストテクノロジーのサイト参照 http://www.besttechnology.co.jp/modules/knowledge/?ROBO-ONE%20SERVER

通信プロトコルについて

- ホストPCとサーボモータはRS485で接続され、 パケットによって命令や状態を送受信を行って います。
- パケット
 - ホスト(マスター)及びデバイス(スレーブ)はパケット単位で通信を行い、ホストからデバイスへ送信する「インストラクションパケット」、デバイスからホストへ送信する「ステータスパケット」の2種類あります。

RS485接続

パケット: 0xFF 0xFF ID LENGTH INSTRUCTION PARAMETER 1···PARAMETER N CHECKSUM

インストラクションパケット

Instruction	Function	Value	Number of Parameter
PING	デバイスの死活確認	0x01	0
READ_DATA	コントロールテーブルへの読み込 み	0x02	2
WRITE_DATA	コントロールテーブルへの書き込 み(即時反映)	0x03	2~
REG_WRITE	コントロールテーブルへの書き込 み(保留)	0x04	2~
ACTION	REG_WRITEで保留された値を反 映	0x05	0
RESET	デバイスのコントロールテーブル の値を出荷時デフォルト化	0x06	0
SYNC_WRITE	複数デバイスの同一コントロール テーブルへの一括書き込み(即時反 映)	0x83	4~

ステータスパケット

Bit	名称	内容				
Bit7	-	-				
Bit6	Instruction Error	未定義のインストラクションが指定された、 もしくはreg_writeなしでactionが指定され た				
Bit5	Overload Error	指定された最大トルクで現在の負荷を制御で きない				
Bit4	Checksum Error	インストラクションパケットのチェックサム が正しく無い				
Bit3	Range Error	パラメータの設定範囲を超えた				
Bit2	Overheating Error	内部温度が設定温度を超えた				
Bit1	Angle Limit Error	Angle Limitの範囲外にGoal Positionが指定 された				
Bit0	Input Voltage Error	電源電圧が指定動作電圧の範囲を超えた				

準備するもの

Robotis

http://www.besttechnology.co.jp/modules/knowledge/?BTE068B%20DXHUB

必要なソフトウェア

近藤科学/64bitCPU/Windows10/Users:nishimura(*)の例

・USBドライバーのインストール(Dual USD adaptor)

http://kondo-robot.com/faq/ko-driver-2013-software(*)環境によってフォルダ名は違います。

・サーボモーター設定ソフトのインストール

- SerialManager
- ・サーバー :SERVER64
 - DL: http://www.besttechnology.co.jp/modules/knowledge/?ROBO-ONE%20SERVER
 - C:¥Users¥nishimura¥Documents¥besttech¥server¥SERVER64(*)

ロボットシステムの設定:Targetedit

- C:¥Users¥nishimura¥Documents¥besttech¥server¥Targetedit (*)
- ロボットサーボの状態:statviewer
 - C:¥Users¥nishimura¥Documents¥besttech¥server¥statviewer (*)
- MATLAB Simulinkのプログラム
 - test1.mdl –サーボ位置教授ソフト
 - ・test2.mdl サイン波による三軸アームの制御ソフト

ロボットアームをイメージし、SignalManagerでサーボモータを設定します。ID,ボーレートほか

ICS 3.5 Serial Manager

1.USBアダプターを挿す。この ときSWはICS側にする。 ドライバーをインストールする。 2.サーボとバッテリーを上図の ように接続する。 3. Serial Managerを起動し、 サーボモータのID,ボーレート ほかを設定する。 4.ロボットアームシステムのす べてのサーボの設定を行う。ID は固有であり、ボーレートは同 じであること。

ICS3.5 Serial Ma	nager Ver 1.0.0.3				х
ファイル ヘルプ					
COM14 👻	RAM				
115200 👻	ID	0 🗸	書込取得	ストレッチ	
				スピード	
	動作	-0		温度	קו 🗖
12.62		7500	FREE	雷流	
按稿	*1			2000	
	通信速度		75/	Ţ	
_	1.25 Mbps	🔘 625 Kbps	115.2Kbps	リバース 📄 シリアルモ	専用
読み込み	761.04		30	BALLAN B	,
	ストレッチ		60	タノビノク	-
	JND971(SEIT)		30	ノロテクジョン	,
書き込み	211 Jac(2000)		127	リミック(正葉式)	ė-
	XND973(SEI3)		127	リミック(リビギム)	- -
	スピード		1	温度制限	
	パンチ	.0		電流制限	
	デッドバンド		2	ユーザオフセット	
	レスポンス		3	バージョン	
			RAM : サーボ上のRAM	を変更します	

ロボットアームシステム

アームシステムの設定

・TargetEditにより、サーボパラメータの変換を行う。

制御モデルやシミュレーションで使用する単位系に変換しておきます。
 またゼロ点の位置も同じになるように設定しておくと良いでしょう。

TargetEdit ×									
Target KONDO KRS Series V Save									
I/F	I/F ¥¥.¥COM8 Baudrate 115200 ~								
0	KRS2552RHV	3500	7500	11500	29.629630				
1	KRS2552RHV	3500	7500	11500	29.629630				
2	KRS2552RHV	3500	7500	11500	29.629630				
Selected Device									
ID 0 V Device name KRS2552RHV V									
min pos 3500 home pos 7500 max pos 11500 Update									
Angle conversion coefficient									
	position / 29.6296	530	= angle	[deg]					

stat viewer [alreadv]

 サーバーを起動し、Targetを設定する。comポートとボーレートを設定 後ポートをオープンしスタートする。アラームがつかなければ正常に動 作しています。

Ś	DB SERVER				_		\times
/F	сома ~	BAUDRATE	115200	∨ [bps]	Port	Open	0
	larget			Running		Star	rt
	KONDO KRS Series	\sim		Alarm			
				Alarm		Sto	P

 StatViewerを起動し、ロボットアームを動かしたとき、 GetAngleの値が変化していれば正常です。

GetAngle	0	0	0	0	0	0
SetAngle	0	0	0	0	0	0
Alarm	0000	0000	0000	0000	0000	0000

MATLAB Simulink:Motion作成

- サーバーを起動し、正常に作動していることを確認したら、MATLAB Simulinkのモデルであるtest1.mdlを起動します。
 - C:¥Users¥nishimura¥Documents¥besttech¥hostapp¥matlab¥test1.mdl
- サーボを手で動かすとその履歴がグラフ化される。良い位置で止めて 読み取れば、モーションが作成できます。

MinGW-w64

- ・ ROBO-ONE-serverとMATLAB Simulinkとの連携
- ROBO-ONE-serverとサーボが正しく繋がっていることを確認後、MATLABを起動します。
 - C:¥Users¥nishimura¥Documents¥besttech¥hostapp¥matlabのtest2.mdl を実行してください。
- C言語のSDKが必要とでた場合はMATLABの画面からアドオンのボタンを選択して下さい。
- ここでMinGW-w64をインストールして下さい。フリーで入手できます。

MATLAB Simulink: Sin駆動

- サーボを動かしてみます。
 - C:¥Users¥nishimura¥Documents¥besttech¥hostapp¥matlab¥test2.mdl
- ・ サイン波に従い各サーボが動作します。

まとめ

- サーバーの活用により比較的理解しやすく、サーボモーターの活用が出来る。
- 株式会社ベストテクノロジーサイトの多くの技術資料が公開されており、独自にプログラムを作成される方はご参照頂きたい。
 - http://www.besttechnology.co.jp/modules/knowledge/?Dynamixel%20Lib rary